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FLUCTUATION MODEL OF A NONEQUILIBRIUM
TWO-PHASE CHANNEL FLOW

F. A. Krivoshei UDC 532.529:533.15

An ill-posed Cauchy problem for a model of a nonequilibrium two-phase flow in the barotropic approximation
is transformed into a well-posed problem by changing the type of the initial hyperbolic equations.
Approximation of fluctuations of the phase velocities by a random delta-correlated process and averaging of
the equations over its realizations generate a system of parabolic equations. Results of numerical integration
of this system are compared with experiment and calculations by well-known models.

1. The ill-posedness of the Cauchy problem due to loss of hyperbolicity of the system of equations for a
two-phase flow in the approximation of phase barotropy was investigated in a number of works to eliminate or at
least restrict its domain [1—4]. Since the difficulties stem from the hypothesis of equality of phase pressures, it
seems natural to employ a model with unequal pressures [4, 5 1. However, in this case an additional closing relation
is needed that would link the phase pressures. In particular, the approach of [5] requires knowledge of the radius
of curvature of the interface in real two-phase flows. It is the absence of reliable information on this parameter that
makes a model with unequal pressures practically useless for applications.

The Cauchy problem can be made well-posed by changing the type of the initial hyperbolic equations. In
this case the issue of ill-posedness due to loss of hyperbolicity of the system is formally eliminated, since it is no
longer hyperbolic a priori (before integration). The approach suggested is based on two procedures: introduction
of fluctuating parameters of the medium into the equations of a stochastic approximation and subsequent averaging
of the obtained stochastic hyperbolic equations over the realizations of the random parameters. This procedure
results in a system of parabolic equations for the average values of the sought parameters of the flow, and it is
necessary to find out whether this system has properties that prevent the development of instability of numerical
solutions.

2. The initial system of hyperbolic equations is written in the approximation of phase barotropy in matrix
form:
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where i = 1, 2 (1 refers to a liquid phase, 2 refers to a gas phase); F are the right-hand sides of the equations;

o \ 7!
R=[2 12} o pa=1-9y.

iopa;
The velocities of the liquid and gas phases always fluctuate because of the statistical nature of processes

in two-phase flows. The phase velocity v; is expressed as a random function equal to the sum of the averaged and
fluctuating terms:

vi=(v)+ v (9.

Assuming that the phase velocities can be described by a delta-correlated Gaussian process, we introduce the
correlation function

(v, () 0v; (1) ) = 2078 () — 1) , (5)

where al2 is the variance of the velocity v;. Averaging the equations in system (1) — (4) over realizations of the random
function v; and evaluating the resultant statistical nonlinearities using the Furutsu—Novikov formula with
correlation (5) taken into account, we obtain a system of parabolic equations for the average sought parameters v;,
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Thus, averaging of Eqgs. (1) —(4) over the realizations of the stochastic parameter y; generates a parabolic system.
In particular, averaging the total derivative of the velocity generates the Biirgers—Hopf operator for the average
velocity, so that Egs. (6) are similar to a Burgers—Hopf system. The appearance of coefficients alz of the second
derivatives having dimensions of kinematic viscosity is associated with the "viscosity” technique in gasdynamics
[6]. It is interesting to note that the phase velocities (coefficients of the first spatial derivatives of the pressure)
are replaced by the variances al-2 at the second derivatives. Similarly, the slip <v,> — <v;> is replaced by the slip
of the corresponding variances a% - a%.

Investigation of the conditions for well-posedness and the properties of solutions of boundary-value
problems for nonlinear parabolic systems of type (6) —(9) involves substantial difficulties, and even simpler systems
of two equations of Burgers—Hopf type with viscosity [6] have been studied inadequately. To test well-posedness
of the present model, results of numerical integration are compared with experiment and results from well-known
models. Here, system (6) — (9) is supplemented by initial and boundary conditions and closing relations that enter
the right-hand sides of the equations and are determined by the formulation of the specific problem.

3. As an example of this problem, the well-known problem of the outflow of a boiling liquid [7, 9] will be
formulated for system ¢6)—(9). A tube of lengih 1 and constant cross-sectional area is closed at both ends by
membranes and filled with homogeneous water at the pressure pg and a temperature 7' ¢ lower than the saturation
temperature T,. At = 0 the membrane at one of the ends is destroyed, and at £ > 0 the boiling water flows out
into surroundings at the pressure po (Pw << pg). The flow is assumed to be adiabatic, and the friction forces on
the tube walls are neglected.

The initial conditions for the homogeneous liquid have the form

t=0:p(x,0=py, T(x,00=Ty,, ¢, (x,0=1, ¢,(x,0=0. (10)

The boundary condition at the closed end of the tube is the condition of the absence of any leaks
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Fig. 1. Experimental and calculated pressure curves in a tube with seal failure:
1) experiment [11]; 2) result of [7] at pg = 6.9 MPa, T = 515 K; 3) present
result at pg = 6.9 MPa, T =515 K, a = 20, ai = 25; 4) the same, at of = 60,
az 75. t, sec.

x=0:v=0. an

The boundary condition at the open end of the tube is equality of the pressures at the exit cross section of the tube
and in the ambient medium

x=L:p=p,. (12)

Solution of system (6)—(9) with boundary conditions (10)—~(12) and closing relations from [2, 7, 9] is obtained
by a Lax~Wendroff difference scheme with artificial viscosity that includes the effects of nonlinearities [10]. The
stability condition for this scheme
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is more limiting than the Courant condition. Here Ax and Ar are the space and time steps, respectively. Since
numerical solutions depend on the parameters aiz, it is natural to relate them to stability condition (13) and the
necessary condition of approximation for a parabolic system [6 ]

(M) /20t = o (14)

The indeterminacy in expression (14) can be eliminated by virtue of the inequality a% > o% Then, with a fixed
Ax, the value of a% in the right-hand side of (14) corresponds to a smaller time step, which is important in the
initial stages of boiling with a highly nonequilibrium flow. Assuming b = o%/o% (o1 # 0), we obtain necessary
conditions for choosing Ax and Af with account for the parameters alz.

Figure 1 shows experimental and calculated pressure curves in a fixed cross section (x = 1.39 m from the
closed end) in the case of seal failure of a tube of length L = 4.1 m filled with water at pg = 6.9 MPa. It is seen
that in accordance with the prediction made in [8 ] on the effect of relative motion of the phases, inclusion of this
factor gives better agreement of the calculated and experimental data than the model suggested in [7]. The values
af = 20, 02 =25 are close to optimum in the sense of the stability of the scheme and the amount of calculations. A
decrease in 02 results in dlsruptlon of the stability of the scheme in the time step and degeneration of the parabolic
system. A mcrease in al leads to an unnecessary decrease in the time step and increase in the amount of

calculations.
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4. To conclude the present work, we consider the possibility of reducing a parabolic system of type (6)—(9)
to a system of the ordinary differential equations. This approach was used, in particular, to analyze solutions of
the Hopf [6] and Oberbeck— Boussinesq {12 ] equations.

The following dimensionless variable will be introduced:

2
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where L; is the scale of velocity fluctuations in the i-th phase; 1; = Liz/ al,z is the characteristic correlation time.
Reformulation of system (6)—(9) in the variable &; gives a system of ordinary differential equations in the two
variables &1 and &;. It will be shown now that under certain conditions it is possible to pass to one variable, having
found a relation between &y and £;. We consider the relation
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and its transformation

§_La|, _ odt_ot) | _at (15)
&L Ly L T '
According to (131, the following inequality is valid:
fi << 35_ (16)
Ly Ly’

which means in this case that the velocity of large-scale fluctuations of the carrier phase is much smaller than that
of small-scale fluctuations of the disperse phase. Then, by virtue of inequality (16), expression (15) can be written
as
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In some practical cases, we are interested in the values of the sought flow parameters near the exit at large x ~1,
where [ is the channel length. Then the inequality

ozt
X >>—£—~ (17

.
is valid. [t is in complete agreement with a similar inequality used in [I13] for turbulent pulsations. Inequality (17)
means that in relation to local properties of the flow (i.e., fluctuations), the main flow of the carrier phase with the
scale x ~/ can be assumed to be steady. This approximation also agrees with the meaning of the delta-correlation
of fluctuations of the phase velocity v; caused by the smallness of the change in the functionals of the process ina
time of the order of its characteristic correlation time 7;. Then with inequality (17) taken into account, we have
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Introducing relation (18) into the equations with the two variables &; and £;, we obtain a system of ordinary
differential equations in one variable with the scale factor L,/L; as a coefficient.

NOTATION

a, velocity of propagation of acoustic perturbations; a, "frozen" velocity of sound; b, dimensionless constant;

h, enthalpy; L, tube length, scale of velocity fluctuations; p, pressure; R, complex; T, temperature; f, time; v,
velocity; x, coordinate; A, step of the difference scheme; d, fluctuating component of the velocity, delta-function;
£, dimensionless variable; p, phase density; o? , variance of the velocity; 7, characteristic correlation time; ¢, volume

phase concentration.
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