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An ill-posed Cauchy problem for a model of a nonequilibrium two-phase flow in the barotropic approximation 
is transformed into a well-posed problem by changing the type of the initial hyperbolic equations. 
Approximation of fluctuations of the phase velocities by a random delta-correlated process and averaging of 
the equations over its realizations generate a system of parabolic equations. Results of numerical integration 
of this system are compared with experiment and calculations by well-known models. 

1. The ill-posedness of the Cauchy problem due to loss of hyperbolicity of the system of equations for a 

two-phase flow in the approximation of phase barotropy was investigated in a number of works to eliminate or at 

least restrict its domain [1 -4  ]. Since the difficulties stem from the hypothesis of equality of phase pressures, it 

seems natural to employ a model with unequal pressures [4, 5 ]. However, in this case an additional closing relation 

is needed that would link the phase pressures. In particular, the approach of [5 ] requires knowledge of the radius 

of curvature of the interface in real two-phase flows. It is the absence of reliable information on this parameter that 

makes a model with unequal pressures practically useless for applications. 

The Cauchy problem can be made well-posed by changing the type of the initial hyperbolic equations. In 

this case the issue of ill-posedness due to loss of hyperbolicity of the system is formally eliminated, since it is no 

longer hyperbolic a priori (before integration). The approach suggested is based on two procedures: introduction 

of fluctuating parameters of the medium into the equations of a stochastic approximation and subsequent averaging 

of the obtained stochastic hyperbolic equations over the realizations of the random parameters. This procedure 

results in a system of parabolic equations for the average values of the sought parameters of the flow, and it is 

necessary to find out whether this system has properties that prevent the development of instability of numerical 

solutions. 
2. The initial system of hyperbolic equations is written in the approximation of phase barotropy in matrix 

form: 
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where i = 1, 2 (1 refers to a liquid phase, 2 refers to a gas phase); F are the f ight-hand sides of the equations; 
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The velocities of the liquid and gas phases always fluctuate because of the statistical nature of processes 

in two-phase flows. The phase velocity vi is expressed as a random function equal to the sum of the averaged and 

fluctuating terms: 

v i = ( v i )  + 6v i (t).  

Assuming that the phase velocities can be described by a delta-correlated Gaussian process, we introduce the 

correlation function 

( 6V i (tl) 6V i (t2)) = 2a~ 6 (t 1 - t2) , (5) 

where cr 2 is the variance of the velocity vi. Averaging the equations in system (1) - (4) over realizations of the random 

function vi and evaluating the resul tant  statistical nonlineari t ies using the F u r u t s u - N o v i k o v  formula with 

correlation (5) taken into account, we obtain a system of parabolic equations for the average sought parameters vi, 

P, Ti, hi: 
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Thus, averaging of Eqs. ( 1 ) -  (4) over the realizations of the stochastic parameter vi generates a parabolic system. 

In particular, averaging the total derivative of the velocity generates the Biirgers-Hopf operator for the average 

velocity, so that Eqs. (6) are similar to a Biirgers-Hopf system. The appearance of coefficients o~/of the second 

derivatives having dimensions of kinematic viscosity is associated with the "viscosity" technique in gasdynamics 

[6 ]. It is interesting to note that the phase velocities (coefficients of the first spatial derivatives of the pressure) 
�9 2 are replaced by the variances ai at the second derivatives. Similarly, the slip <v2> - <vi> is replaced by the slip 

of the corresponding variances a~ - al 2. 

Investigation of the conditions for well-posedness and the properties of solutions of boundary-value 

problems for nonlinear parabolic systems of type (6) - (9) involves substantial difficulties, and even simpler systems 
of two equations of Biirgers-Hopf type with viscosity [6 ] have been studied inadequately. To test well-posedness 
of the present model, results of numerical integration are compared with experiment and results from well-known 

models. Here, system (6 ) -  (9) is supplemented by initial and boundary conditions and closing relations that enter 
the right-hand sides of the equations and are determined by the formulation of the specific problem. 

3. As an example of this problem, the well-known problem of the outflow of a boiling liquid [7, 9 ] will be 

formulated for system (6) - (9 ) .  A tube of length L and constant cross-sectional area is closed at both ends by 

membranes and filled with homogeneous water at the pressure P0 and a temperature TI0 lower than the saturation 
temperature T s. At t = 0 the membrane at one of the ends is destroyed, and at t > 0 the boiling water flows out 

into surroundings at the pressure poo (p~ << P0). The flow is assumed to be adiabatic, and the friction forces on 

the tube walls are neglected. 
The initial conditions for the homogeneous liquid have the form 

t = 0 : p (x,  0) = P0, T (x,  0) = T10, ~o 1 (x,  0) = 1 , T2 (x, 0) = 0 .  (10) 

The boundary condition at the closed end of the tube is the condition of the absence of any leaks 
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Fig. 1. Experimental and calculated pressure curves in a tube with seal failure: 

1) experiment [11 ]; 2) result of [7] at Po = 6.9 MPa, T = 515 K; 3) present 

2 20, z 25; 4) the same, a t o l l = 6 0 ,  result at Po = 6.9 MPa, T = 515 K, c~ 1 = c r  2 = 

cr~l= t, sec. 75. 

x = 0 "  v = 0 .  (11) 

The boundary condition at the open end of the tube is equality of the pressures at the exit cross section of the tube 

and in the ambient medium 

x = L :  p = p o o .  (12) 

Solution of system (6 ) - (9 )  with boundary conditions (10)-(12)  and closing relations from [2, 7, 9 ] is obtained 

by a Lax-Wendro f f  difference scheme with artificial viscosity that includes the effects of nonlinearities [10 ]. The 

stability condition for this scheme 

(Iv[ +-d)At ( b21~ b A x  < 1 + ~ -  2 (13) 

is more limiting than the Courant condition. Here Ax and At are the space and time steps, respectively. Since 

numerical solutions depend on the parameters or/2, it is natural to relate them to stability condition (13) and the 

necessary condition of approximation for a parabolic system [6 ] 

(Ax)2/2At = a~. (14) 

The indeterminacy in expression (14) can be eliminated by virtue of the inequality cr~ > ~ .  Then,  with a fixed 

Ax, the value of cr~ in the r ight-hand side of (14) corresponds to a smaller time step, which is important in the 

initial stages of boiling with a highly nonequilibrium flow. Assuming b = o~2/cr~l (Crl ;e 0), we obtain necessary 

conditions for choosing Ax and At with account for the parameters or/2. 

Figure 1 shows experimental and calculated pressure curves in a fixed cross section (x = 1.39 m from the 

closed end) in the case of seal failure of a tube of length L = 4.1 m filled with water at P0 = 6.9 MPa. It is seen 

that in accordance with the prediction made in [8 ] on the effect of relative motion of the phases, inclusion of this 

factor gives better agreement of the calculated and experimental data than the model suggested in [7 ]. The values 

a~ = 20, ~ ~ = 25 are close to optimum in the sense of the stability of the scheme and the amount of calculations. A 
decrease in or/2 results in disruption of the stability of the scheme in the time step and degeneration of the parabolic 
system. A increase in or/2 leads to an unnecessary decrease in the time step and increase in the amount  of 

calculations. 
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4. To conclude the present  work, we consider the possibility of reducing a parabolic system of type (6) - (9) 

to a system of the ordinary differential equations. This approach was used, in particular, to analyze solutions of 

the Hopf [6 ] and Oberbeck-Bouss inesq  [12 ] equations. 

The  following dimensionless variable will be introduced: 

2 
x cr i t 

L i L~ ' 

2 2 where L i is the scale of velocity fluctuations in the i-th phase; Q = L . / a .  is the characteristic correlation time. 
Z 

Reformulation of system ( 6 ) - ( 9 )  in the variable ~i gives a system of ordinary differential equations in the two 

variables ~1 and ~2. It will be shown now that under  certain conditions it is possible to pass to one variable, having 

found a relation between ~1 and ~2. We consider the relation 

x - w )  
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According to [13 ], the following inequality is valid: 

(15) 
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which means in this case thai the velocity of large-scale fluctuations of the carrier phase is much smaller than that 

of small-scale fluctuations of the disperse phase. Then,  by virtue of inequality (16), expression (15) can be written 

as 

I -i 
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In some practical cases, we are interested in the values of the sought flow parameters near  the exit at large x ~ t ,  

where l is the channel length. Then the inequality 

2 
cr i t (17) 

x >> 
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is valid. It is in complete agreement  with a similar inequality used in [13 ] for turbulent pulsations. Inequality (17) 

means that in relation to local properties of the flow (i.e., fluctuations), the main flow of the carrier phase with the 

scale x ~- l can be assumed to be steady. This approximation also agrees with the meaning of the delta-correlation 

of fluctuations of the phase velocity vi caused by the smallness of the change in the functionals of the process in a 

time of the order  of its characteristic correlation time T i. Then  with inequality (17) taken into account, we have 

2 / )_1 
o" 2 t a 2 t ~1 L2 
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(18) 
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Introducing relation (18) into the equations with the two variables ~1 and ~2, we obtain a system of ordinary 
differential equations in one variable with the scale factor L2/L1 as a coefficient. 

N O T A T I O N  

a, velocity of propagation of acoustic perturbations; ~, "frozen" velocity of sound; b, dimensionless constant; 
J~, enthalpy; L, tube length, scale of velocity fluctuations; p, pressure; R, complex; T, temperature; t, time; v, 
velocity; x, coordinate; A, step of the difference scheme; 6, fluctuating component of the velocity, delta-function; 
d~, dimensionless variable; p, phase density; 0 2, variance of the velocity; ~, characteristic correlation time; ~o, volume 
phase concentration. 
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